

BC660K-GL&BC950K-GL

HTTP(S) Application Note

 NB-IoT Module Series

 Version: 1.0

Date: 2023-06-19

 Status: Released

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 1 / 31

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you

require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai

200233, China

Tel: +86 21 5108 6236

Email: info@quectel.com

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices
We offer information as a service to you. The provided information is based on your requirements and we

make every effort to ensure its quality. You agree that you are responsible for using independent analysis

and evaluation in designing intended products, and we provide reference designs for illustrative purposes

only. Before using any hardware, software or service guided by this document, please read this notice

carefully. Even though we employ commercially reasonable efforts to provide the best possible experience,

you hereby acknowledge and agree that this document and related services hereunder are provided to you

on an “as available” basis. We may revise or restate this document from time to time at our sole discretion

without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted.

They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall

not be copied, reproduced, distributed, merged, published, translated, or modified without prior written

consent. We and the third party have exclusive rights over copyrighted material. No license shall be

granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid

ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal

non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for

noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of

the material.

mailto:info@quectel.com
http://www.quectel.com/support/sales.htm
http://www.quectel.com/support/technical.htm
mailto:support@quectel.com

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 2 / 31

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights

to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel

or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties

(“third-party materials”). Use of such third-party materials shall be governed by all restrictions and

obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials,

including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular

purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any

third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein

constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell,

offer for sale, or otherwise maintain production of any our products or any other hardware, software,

device, tool, information, or product. We moreover disclaim any and all warranties arising from the course

of dealing or usage of trade.

Privacy Policy
To implement module functionality, certain device data are uploaded to Quectel’s or third-party’s servers,

including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the

relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the

purpose of performing the service only or as permitted by applicable laws. Before data interaction with

third parties, please be informed of their privacy and data security policy.

Disclaimer
a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.

b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the

information contained herein.

c) While we have made every effort to ensure that the functions and features under development are

free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless

otherwise provided by valid agreement, we make no warranties of any kind, either implied or express,

and exclude all liability for any loss or damage suffered in connection with the use of features and

functions under development, to the maximum extent permitted by law, regardless of whether such

loss or damage may have been foreseeable.

d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of

information, advertising, commercial offers, products, services, and materials on third-party websites

and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 3 / 31

About the Document

Revision History

Version Date Author Description

- 2023-04-13
Randy LI/

Caden ZHANG
Creation of the document

1.0 2023-06-19

Yance YANG/

Randy LI/

Caden ZHANG

First official release

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 4 / 31

Contents

About the Document ... 3

Contents ... 4

Table Index ... 5

1 Introduction .. 6

1.1. Description of HTTP(S) Request Header ... 6

1.1.1. Customize HTTP(S) Request Header ... 6

1.1.2. Output HTTP(S) Response Header ... 7

2 Description of HTTP(S) AT Commands ... 8

2.1. AT Command Syntax .. 8

2.1.1. Definitions ... 8

2.1.2. AT Command Syntax ... 8

2.2. Declaration of AT Command Examples .. 9

2.3. AT Command Description ... 9

2.3.1. AT+QHTTPCFG Configure Parameters for HTTP(S) Server 9

2.3.2. AT+QHTTPURL Set URL of HTTP(S) Server ... 12

2.3.3. AT+QHTTPGET Send GET Request to HTTP(S) Server ... 13

2.3.4. AT+QHTTPGETEX Send GET Request to HTTP(S) Server to Get Data With

Specified Range .. 14

2.3.5. AT+QHTTPPOST Send POST Request to HTTP(S) Server via UART/USB 15

2.3.6. AT+QHTTPREAD Read Response from HTTP(S) Server via UART/USB 17

3 Examples .. 19

3.1. Access to HTTP Server .. 19

3.1.1. Send HTTP GET Request and Read the Response ... 19

3.1.2. Send HTTP POST Request and Read the Response ... 20

3.2. Access to HTTPS Server .. 21

3.2.1. Send HTTPS GET Request and Read the Response ... 21

3.2.2. Send HTTPS POST Request and Read the Response .. 23

4 Error Handling .. 26

4.1. Executing HTTP(S) AT Commands Fails .. 26

4.2. DNS Parse Fails .. 26

4.3. Entering Data Mode Fails ... 26

4.4. Sending GET/POST Requests Fails ... 27

4.5. Reading Response Fails ... 27

5 Summary of ERROR Codes .. 28

6 Summary of HTTP(S) Response Codes .. 30

7 Appendix and References ... 31

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 5 / 31

Table Index

Table 1: Types of AT Commands ... 8

Table 2: Summary of Error Codes .. 28

Table 3: Summary of HTTP Response Codes ... 30

Table 4: Related Documents .. 31

Table 5: Terms and Abbreviations .. 31

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 6 / 31

1 Introduction

Quectel BC660K-GL and BC950K-GL modules support HTTP(S) applications through accessing HTTP(S)

servers.

Hypertext Transfer Protocol (HTTP) is an application layer protocol for distributed, collaborative,

hypermedia information systems.

Hypertext Transfer Protocol Secure (HTTPS) is a variant of the standard web transfer protocol (HTTP)

that adds a layer of security on the data in transit through a secure socket layer (SSL) or transport layer

security (TLS) protocol connection. The main purpose of HTTPS development is to provide identity

authentication for website servers and protect the privacy and integrity of exchanged data.

This document is a reference guide to all the AT commands defined for HTTP(S).

1.1. Description of HTTP(S) Request Header

1.1.1. Customize HTTP(S) Request Header

HTTP(S) request header is filled by the module automatically. It can be customized by configuring

<request_header> as 1 via AT+QHTTPCFG (see Chapter 2.3.1), and then by inputting HTTP(S)

request header (see Chapter 2.3.5) according to the following requirements:

⚫ Apply HTTP(S) request header syntax.

⚫ The value of URI in HTTP(S) request line and the “Host:” request header must be in line with the URL

set with AT+QHTTPURL.

⚫ The HTTP(S) request header must end with <CR><LF>.

A valid HTTP(S) POST request header is shown in the following example:

POST /processorder.php HTTP/1.1<CR><LF>

Host: 220.180.239.212:8011<CR><LF>

Accept: */*<CR><LF>

User-Agent: QUECTEL_MODULE<CR><LF>

Connection: Keep-Alive<CR><LF>

Content-Type: application/x-www-form-urlencoded<CR><LF>

Content-Length: 48<CR><LF>

<CR><LF>

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 7 / 31

Message=1111&Appleqty=2222&Orangeqty=3333&find=1

1.1.2. Output HTTP(S) Response Header

HTTP(S) response header is not automatically output. Outputting of the HTTP(S) response header can

be enabled by setting <response_header> to 1 via AT+QHTTPCFG (see Chapter 2.3.1). The HTTP(S)

response header will be output with HTTP(S) response body after executing AT+QHTTPREAD (see

Chapter 2.3.6).

1.2. Description of Data Mode

BC660K-GL and BC950K-GL support two working modes of the COM port: AT command mode and data

mode. In the AT command mode, the data input via the COM port are interpreted as AT commands;

whereas in data mode, they are interpreted as data.

By default, the BC660K-GL and BC950K-GL modules operate in AT command mode. After receiving the >

response, the modules switch to data mode within 500 ms. To exit data mode and transmit the data to the

COM port, enter “Ctrl" + “Z". Alternatively, entering “Esc" will make the module exit data mode and cancel

the sending process.

1. After receiving the > response, it is recommended for the MCU to wait for 500 ms before sending the

data.

2. In data mode, URCs will be lost. To prevent this, please enter the data to be sent immediately after

the > response, and promptly exit data mode.

NOTE

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 8 / 31

2 Description of HTTP(S) AT Commands

2.1. AT Command Syntax

2.1.1. Definitions

⚫ <CR> Carriage return character.

⚫ <LF> Line feed character.

⚫ <...> Parameter name. Angle brackets do not appear on the command line.

⚫ [...] Optional parameter of a command or an optional part of TA information response.

 Square brackets do not appear on the command line. When an optional parameter is

 not given in a command, the new value equals its previous value or the default settings,

 unless otherwise specified.

⚫ Underline Default setting of a parameter.

2.1.2. AT Command Syntax

All command lines must start with AT or at and end with <CR>. Information responses and result codes

always start and end with a carriage return character and a line feed character:

<CR><LF><response><CR><LF>. Throughout this document, only the commands and responses are

presented, while carriage return and line feed characters are deliberately omitted.

Table 1: Types of AT Commands

Command Type Syntax Description

Test Command AT+<cmd>=?

Test the existence of the corresponding

command and return information about the

type, value, or range of its parameter.

Read Command AT+<cmd>?
Check the current parameter value of the

corresponding command.

Write Command AT+<cmd>=<p1>[,<p2>[,<p3>[...]]] Set user-definable parameter value.

Execution Command AT+<cmd>
Return a specific information parameter or

perform a specific action.

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 9 / 31

2.2. Declaration of AT Command Examples

The AT command examples in this document are provided to help you learn about the use of the AT

commands introduced herein. The examples, however, should not be taken as Quectel’s

recommendations or suggestions about how to design a program flow or what status to set the module

into. Sometimes multiple examples may be provided for one AT command. However, this does not mean

that there is a correlation among these examples, or that they should be executed in a given sequence.

2.3. AT Command Description

2.3.1. AT+QHTTPCFG Configure Parameters for HTTP(S) Server

The command configures the parameters for HTTP(S) server, including configuring a PDP context ID,

customizing HTTP(S) request header, outputting HTTP(S) response header and querying SSL settings. If

the Write Command only executes one parameter, it queries the current settings.

AT+QHTTPCFG Configure Parameters for HTTP(S) Server

Test Command

AT+QHTTPCFG=?

Response

+QHTTPCFG: "contextid",(range of supported <contextID>

s)

+QHTTPCFG: "requestheader",(list of supported <request_

header>s)

+QHTTPCFG: "responseheader",(list of supported <respon

se_header>s)

+QHTTPCFG: "contenttype",(range of supported <content_

type>s)

+QHTTPCFG: "ssl",(range of supported <SSL_contextID>

s),(range of supported <SSL_connectID>s)

+QHTTPCFG: "readformat",(list of supported <read_forma

t>s)

OK

Read Command

AT+QHTTPCFG?

Response

+QHTTPCFG: "contextid",<contextID>

+QHTTPCFG: "requestheader",<request_header>

+QHTTPCFG: "responseheader",<response_header>

+QHTTPCFG: "contenttype",<content_type>

+QHTTPCFG: "ssl",<SSL_contextID>,<SSL_connectID>

+QHTTPCFG: "readformat",<read_format>

OK

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 10 / 31

Write Command

Set/query the PDP context ID.

AT+QHTTPCFG="contextid"[,<con

textID>]

Response

If the optional parameter is omitted, query the current settings:

+QHTTPCFG: "contextid",<contextID>

OK

If the optional parameter is specified, set the context ID:

OK

Or

ERROR

Write Command

Set/query whether to enable

customizing HTTP(S) request

header.

AT+QHTTPCFG="requestheader"[

,<request_header>]

Response

If the optional parameter is omitted, query the current setting:

+QHTTPCFG: "requestheader",<request_header>

OK

If the optional parameter is specified, enable or disable

customizing HTTP(S) request header:

OK

Or

ERROR

Write Command

Set/query whether to enable

customizing HTTP(S) response

header.

AT+QHTTPCFG="responseheader

"[,<response_header>]

Response

If the optional parameter is omitted, query the current setting:

+QHTTPCFG: "responseheader",<response_header>

OK

If the optional parameter is specified, enable or disable

customizing HTTP(S) response header:

OK

Or

ERROR

Write Command

Set/query data type of HTTP(S)

body.

AT+QHTTPCFG="contenttype"[,<c

ontent_type>]

Response

If the optional parameter is omitted, query the current setting:

+QHTTPCFG: "contenttype",<content_type>

OK

If the optional parameter is specified, set data type of HTTP(S)

body:

OK

Or

ERROR

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 11 / 31

Parameter

Write Command

Set/query SSL context ID and

connection ID.

AT+QHTTPCFG="ssl"[,<SSL_cont

extID>,<SSL_connectID>]

Response

If the optional parameters are omitted, query the current setting:

+QHTTPCFG: "ssl",<SSL_contextID>,<SSL_connectID>

OK

If the optional parameters are specified, set SSL context ID and

connection ID:

OK

Or

ERROR

Write Command

AT+QHTTPCFG="readformat"[,<re

ad_format>]

Response

If the optional parameter is omitted, query the current setting:

+QHTTPCFG: "readformat",<read_format>

OK

If the optional parameter is specified, set the display format of

the data returned by AT+QHTTPREAD:

OK

If there is any error:

ERROR

Or

+CME ERROR: <result>

Maximum Response Time 300 ms

Characteristics
The command takes effect immediately.

The configurations are not saved.

<contextID> Integer type. PDP context ID. Range: 0–10 (currently only 0 is supported).

<request_header> Integer type. Disable or enable customizing HTTP(S) request header.

0 Disable

1 Enable

<response_header> Integer type. Disable or enable outputting HTTP(S) response header.

0 Disable

1 Enable

<content_type> Integer type. Data type of HTTP(S) body.

0 application/x-www-form-urlencoded

1 text/plain

2 application/octet-stream

3 multipart/form-data

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 12 / 31

1. SSL/TLS connection configurations must be set by AT+QSSLCFG. For details of the command, see

document [1].

2. Currently only default <contextID>, <SSL_contextID> and <SSL_connectID> are supported.

3. Due to chip space limitation, currently HTTPS only supports one-way authentication and no

authentication. Two-way authentication is not supported.

2.3.2. AT+QHTTPURL Set URL of HTTP(S) Server

This command sets URL of HTTP(S) server. URL must begin with "http://" or "https://", which indicates

that an HTTP or HTTPS server will be accessed.

<SSL_contextID> Integer type. SSL context ID. Range: 0–10 (currently only 0 is supported).

<SSL_connectID> Integer type. SSL connection ID. Range: 0–4 (currently only 0 is supported).

<read_format> String type. Indicates whether a carriage return and line feed should be

included in AT+QHTTPREAD response.

0 No

1 Yes

<result> Integer type. Result code. See Chapter 5.

AT+QHTTPURL Set URL of HTTP(S) Server

Test Command

AT+QHTTPURL=?

Response

+QHTTPURL: (range of supported <URL_length>s),(range

of supported <timeout>s)

OK

Read Command

AT+QHTTPURL?

Response

+QHTTPURL: <URL>

OK

Write Command

AT+QHTTPURL=<URL_length>[,<tim

eout>]

Response

a) If the parameter format is correct, but HTTP(S) GET/POST

requests are not being sent:

>

After receiving the > response, the module enters data mode,

and the URL can be input. When the total size of the input

data reaches <URL_length>, the module returns to

command mode and responds with:

OK

If <timeout> has been reached, but the length of the received

URL is less than <URL_length>, the module returns to

NOTE

http://

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 13 / 31

Parameter

2.3.3. AT+QHTTPGET Send GET Request to HTTP(S) Server

This command sends a GET request to HTTP(S) server. The format of the command depends on the

configured <request_header> in AT+QHTTPCFG="requestheader"[,<request_header>] (see Chapter

2.3.1). Customizing GET request header is not supported. If <request_header> is set to 1, executing

AT+QHTTPGET will result in an ERROR response. In such cases, you can use AT+QHTTPPOST (see

Chapter 2.3.5) to send a custom HTTP(S) GET packet.

After AT+QHTTPGET Write Command is sent, it is suggested to wait for a specific period of time (refer to

the maximum response time below) for +QHTTPGET: <result>[,<HTTP_rspcode>[,<content_length>]]

to be output after OK is returned.

<HTTP_rspcode> can only be reported in +QHTTPGET: <result>[,<HTTP_rspcode>[,<content_le

ngth>]], when <result> is 0. If HTTP(S) response header contains content-length information, it w

ill be reported as <content_length>.

command mode and responds with:

ERROR

b) If the parameter format is incorrect or other errors occur:

ERROR

Maximum Response Time 300 ms

Characteristics
The command takes effect immediately.

The configurations are not saved.

<URL_length> Integer type. Length of URL. Range: 1–256. Unit: byte.

<timeout> Integer type. Maximum time for inputting a URL. Range: 1–300. Default value: 60.

Unit: second.

AT+QHTTPGET Send GET Request to HTTP(S) Server

Test Command

AT+QHTTPGET=?

Response

+QHTTPGET: (range of supported <rsptime>s),(range of

supported <read_timeout>s)

OK

Write Command

AT+QHTTPGET[=<rsptime>[,<read

_timeout>]]

Response

If the parameter format is correct and no other errors occur:

OK

When the module receives a response from HTTP(S) server, it

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 14 / 31

Parameter

2.3.4. AT+QHTTPGETEX Send GET Request to HTTP(S) Server to Get Data With

 Specified Range

MCU can retrieve data with a specific position and length from HTTP(S) server by using

AT+QHTTPGETEX. This command is only executable when AT+QHTTPCFG="requestheader",0

configuration is set. After sending the command, HTTP(S) server will always respond to the GET request

for retrieving data with a specified position and length, by returning a 206 response code.

reports the following URC:

+QHTTPGET: <result>[,<HTTP_rspcode>[,<content_

length>]]

If there is any error:

ERROR

Or

+CME ERROR: <result>

Maximum Response Time Determined by <rsptime>

Characteristics /

<rsptime> Integer type. Timeout for the HTTP(S) GET response +QHTTPGET:

<result>[,<HTTP_rspcode>[,<content_length>]] to be output after OK is

returned. Range: 1–300. Default value: 60. Unit: second.

<read_timeout> Integer type. Maximum time for executing AT+QHTTPGET before releasing the

HTTP resources. Range: 1–300. Default value: 60. Unit: second.

<result> Integer type. Result code. See Chapter 5.

<HTTP_rspcode> Integer type. HTTP(S) response code. See Chapter 6.

<content_length> Integer type. Length of HTTP(S) response body. Unit: byte.

AT+QHTTPGETEX Send GET Request to HTTP(S) Server to Get Data With Specified

Range

Test Command

AT+QHTTPGETEX=?

Response

+QHTTPGETEX: (range of supported <rsptime>s),<start_

postion>,<read_len>,(range of supported <read_timeout>

s)

OK

Write Command

AT+QHTTPGETEX=<rsptime>,<start_

position>,<read_len>[,<read_timeout

Response

If the parameter format is correct and no other errors occur:

OK

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 15 / 31

Parameter

<rsptime> Integer type. Timeout for the HTTP(S) GET response +QHTTPGETEX:

<result>,<HTTP_rspcode>[,<content_length>] to be output after OK is

returned. Range: 1–300. Default: 60. Unit: second.

<start_postion> Integer type. The start position of the data that the HTTP(S) client wants to get.

<read_len> Integer type. The length of the data that the HTTP(S) client wants to get.

<read_timeout> Integer type. Maximum time for executing AT+QHTTPGETEX before releasing

 the resources. Range: 1–300. Default value: 60. Unit: second.

<result> Integer type. Result code. See Chapter 5.

<HTTP_rspcode> Integer type. HTTP response code. See Chapter 6 for details.

<content_length> Integer type. The length of HTTP(S) response body. Unit: byte.

2.3.5. AT+QHTTPPOST Send POST Request to HTTP(S) Server via UART/USB

The command sends a POST request to an HTTP(S) server. Depending on the configuration of

<request_header> in AT+QHTTPCFG="requestheader"[,<request_header>], AT+QHTTPPOST Write

Command can have two different formats (see Chapter 2.3.1):

⚫ If <request_header> is set to 0, HTTP(S) POST body should be input via UART/USB port.

⚫ If <request_header> is set to 1, both HTTP(S) POST header and body should be input via

UART/USB port.

After AT+QHTTPPOST is sent, the module may output > within 50 s to indicate a successful connection.

If > is not received within this time, it indicates a socket error and the module responds with

+QHTTPPOST: 716. It is recommended to wait for a specific period of time (refer to the maximum

response time below) for +QHTTPPOST: <result>[,<HTTP_rspcode>[,<content_length>]] to be output

after OK is returned.

>]

When the module receives a response from HTTP(S) server,

it will report the following URC:

+QHTTPGETEX: <result>[,<HTTP_rspcode>,<content_le

ngth>]

If there is any error:

ERROR

Or

+CME ERROR: <result>

Maximum Response Time Determined by <rsptime>

Characteristics Description /

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 16 / 31

Parameter

AT+QHTTPPOST Send POST Request to HTTP(S) Server via UART/USB

Test Command

AT+QHTTPPOST=?

Response

+QHTTPPOST: (range of supported <data_length>s),(range of

supported <input_time>s),(range of supported

<rsptime>s),(list of supported <flag>s),(range of supported

<read_timeout>s)

OK

Write Command

AT+QHTTPPOST=<data_length>[,

<input_time>,<rsptime>[,<flag>[,<

read_timeout>]]]

Response

a) If the parameter format is correct, HTTP(S) server is

connected successfully and HTTP(S) request header is sent:

>

After > is returned, the module switches to data mode, and the

HTTP(S) POST body can be input. When the total size of the

input data reaches <data_length>, the module returns to

command mode and responds with:

OK

When the module receives a response from HTTP(S) server, it

reports the following URC:

+QHTTPPOST: <result>[,<HTTP_rspcode>[,<content_lengt

h>]]

If the <input_time> has been reached, but the received length

of data is less than <data_length>, the module returns to

command mode and responds with:

ERROR

b) If the parameter format is incorrect or other errors occur:

ERROR

Maximum Response Time Determined by network and <rsptime>

Characteristics /

<data_length> Integer type. If <request_header> is 0, it indicates the length of HTTP(S)

POST body. If <request_header> is 1, it indicates the length of HTTP(S)

POST request information, including HTTP(S) request header and HTTP(S)

request body. Range: 1–2048. Unit: byte.

<input_time> Integer type. Maximum time for inputting HTTP(S) POST body or HTTP(S)

POST request information. Range: 1–300. Default value: 60. Unit: second.

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 17 / 31

2.3.6. AT+QHTTPREAD Read Response from HTTP(S) Server via UART/USB

This command retrieves the HTTP(S) server response via the UART/USB port, after HTTP(S) GET/POST

requests are sent. It must be executed after one of the following URCs is received.

⚫ +QHTTPGET: <result>[,<HTTP_rspcode>[,<content_length>]]

⚫ +QHTTPPOST: <result>[,<HTTP_rspcode>[,<content_length>]]

Parameter

<rsptime> Integer type. Timeout for the HTTP(S) POST response +QHTTPPOST:

<result>[,<HTTP_rspcode>[,<content_length>]] to be output after OK is

returned. Range: 1–300. Default value: 60. Unit: second.

<flag>

<read_timeout>

<result>

Integer type. Whether the current packet is the last packet.

0 Packet is the last one

1 Packet is not the last one

Integer type. Maximum time for executing AT+QHTTPPOST before releasing

the HTTP resources. Range: 1–300. Default value: 60. Unit: second.

Integer type. Result code. See Chapter 5.

<HTTP_rspcode> Integer type. HTTP(S) response code. See Chapter 6.

<content_length> Integer type. Length of HTTP(S) response body. Unit: byte.

AT+QHTTPREAD Read Response from HTTP(S) Server via UART/USB

Test Command

AT+QHTTPREAD=?

Response

+QHTTPREAD: (range of supported <read_length>s)

OK

Write Command

AT+QHTTPREAD=<read_length>

Response

If the parameter format is correct and the server response is

read successfully:

+QHTTPREAD: <actual_read_length>,<remaining_length>

<Output HTTP(S) response information>

OK

If the parameter format is incorrect or other errors occur:

ERROR

Maximum Response Time Determined by network and <rsptime>

Characteristics /

<read_length> Integer type. Length of data requested to be read. Range: 1–1024. Default

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 18 / 31

value: 1024. Unit: byte.

<actual_read_length> Integer type. Actual length of received data. Unit: byte.

<remaining_length> Integer type. Remaining length of last received data. Unit: byte.

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 19 / 31

3 Examples

3.1. Access to HTTP Server

3.1.1. Send HTTP GET Request and Read Response

The following examples show how to send HTTP GET request with a custom HTTP request header and

how to read HTTP GET response.

//Example of how to send HTTP GET request.

AT+QSCLK=0 //Disable sleep mode.

OK

AT+QHTTPCFG="contextid",0 //Set the PDP context ID to 0.

OK

AT+QHTTPCFG="responseheader",1 //Enable outputting of HTTP response header.

OK

AT+QHTTPURL=19,80 //Set the URL of HTTP server to be accessed.

>

http://example.com/ //Input URL whose length is 19 bytes.

OK

AT+QHTTPGET=80 //Send HTTP GET request and set the maximum response time

 of HTTP GET request to 80 s.

OK

+QHTTPGET: 0,200,1256 //If HTTP response header contains CONTENT-LENGTH

 information, <content_length> is returned.

//Example of how to read HTTP response.

//Read HTTP response information via UART port.

AT+QHTTPREAD=80 //Read 80 bytes of HTTP response information via UART.

+QHTTPREAD: 80,1431 //The actual length of the read data is 80 bytes, and the

 remaining length of the HTTP response is 1431 bytes.

HTTP/1.1 200 OK

Age: 430547

Cache-Control: max-age=604800

Content-Type: text/

http://example.com/

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 20 / 31

OK

AT+QSCLK=1 //Enable sleep mode.

OK

3.1.2. Send HTTP POST Request and Read Response

The following examples show how to send HTTP POST request and retrieve post body via UART port,

and how to read HTTP POST response.

AT+QSCLK=0 //Disable sleep mode.

OK

AT+QHTTPCFG="contextid",0 //Set the PDP context ID to 0.

OK

AT+QHTTPURL=59,80 //Set the URL of HTTP server to be accessed.

>

http://api.efxnow.com/DEMOWebServices2.8/Service.asmx/Echo? //Input URL whose length is 59

 bytes.

OK

AT+QHTTPPOST=20,80,80 //Send HTTP POST request. POST body is obtained via UART. The

 maximum time for inputting HTTP POST body is 80 s and the

 maximum timeout for HTTP POST response is 80 s.

>

Message=HelloQuectel //Input HTTP POST body whose length is 20 bytes.

OK

+QHTTPPOST: 0,200,177 //If the HTTP response header contains CONTENT-LENGTH,

 <content_length> is returned.

//Example of how to read HTTP response.

AT+QHTTPREAD=80 //Read 80 bytes of HTTP response body via UART.

+HTTPREAD: 80,97 //The actual length of the read data is 80 bytes, and the remaining

 length of the HTTP response is 97 bytes.

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="httpHTTPs://api.efxnow.co

OK

AT+QSCLK=1 //Enable sleep mode.

OK

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 21 / 31

3.2. Access to HTTPS Server

3.2.1. Send HTTPS GET Request and Read Response

The following examples show how to send HTTPS GET request with a custom HTTPS request header

and how to read HTTPS GET response.

//Example of how to send HTTPS GET request.

RDY

+CFUN: 1

+CPIN: READY

AT+CGPADDR

+CGPADDR: 1,"26.186.218.184"

OK

AT+QSCLK=0 //Disable sleep mode.

OK

AT+QSSLCFG=0,0,"seclevel",1 //Set the authentication mode to manage server authentication

 for SSL context 0.

OK

AT+QSSLCFG=0,0,"cacert" //Configure CA certificate.

> //Input the content of the trusted CA certificate in PEM format. Tap

 "CTRL"+"Z" to send.

+QSSLCFG: 0,0,"cacert",1360

OK

AT+QHTTPCFG="ssl",0,0 //Set SSL context ID and connection ID to 0 and 0 respectively.

OK

AT+QHTTPCFG="responseheader",1 //Enable outputting of HTTPS response header.

OK

AT+QHTTPURL=24 //Set the URL of HTTPS server to be accessed

>

https://www.example.com/ //Input URL whose length is 24 bytes.

OK

AT+QHTTPGET=80 //Send HTTPS GET request and set the maximum response time of

 HTTPS GET request to 80 s.

OK

+QHTTPGET: 0,200,1256

//Example of how to read HTTP response.

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 22 / 31

AT+QHTTPREAD=1024 //Read 1024 bytes of HTTPS response header and body via UART,

+QHTTPREAD: 1024,583 //The actual length of the read data is 1024 bytes, and the remaining

 length of the HTTPS response is 583 bytes.

HTTP/1.1 200 OK

Accept-Ranges: bytes

Age: 557023

Cache-Control: max-age=604800

Content-Type: text/html; charset=UTF-8

Date: Wed, 06 May 2020 14:04:53 GMT

Etag: "3147526947"

Expires: Wed, 13 May 2020 14:04:53 GMT

Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT

Server: ECS (sjc/4E73)

Vary: Accept-Encoding

X-Cache: HIT

Content-Length: 1256

<!doctype html>

<html>

<head>

 <title>Example Domain</title>

 <meta charset="utf-8" />

 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1" />

 <style type="text/css">

 body {

 background-color: #f0f0f2;

 margin: 0;

 padding: 0;

 font-family: -apple-system, system-ui, BlinkMacSystemFont, "Segoe UI", "Open Sans",

"Helvetica Neue", Helvetica, Arial, sans-serif;

 }

 div {

 width: 600px;

 margin: 5em auto;

 padding: 2em;

 background-color: #fdfdff;

 border-radius: 0.5em;

 box-shado

OK

AT+QHTTPREAD=583 //Read 583 bytes of HTTPS response header and body via UART port.

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 23 / 31

+QHTTPREAD: 583,0 //The actual length of the read data is 583 bytes, and the remaining

 length of the HTTP response is 0 bytes.

w: 2px 3px 7px 2px rgba(0,0,0,0.02);

 }

 a:link, a:visited {

 color: #38488f;

 text-decoration: none;

 }

 @media (max-width: 700px) {

 div {

 margin: 0 auto;

 width: auto;

 }

 }

 </style>

</head>

<body>

<div>

 <h1>Example Domain</h1>

 <p>This domain is for use in illustrative examples in documents. You may use this

 domain in literature without prior coordination or asking for permission.</p>

 <p>More information...</p>

</div>

</body>

</html>

OK

AT+QSCLK=1 //Enable sleep mode.

OK

3.2.2. Send HTTPS POST Request and Read Response

The following examples show how to send HTTPS POST request and retrieve post body via UART port,

and how to read HTTPS POST response.

RDY

+CFUN: 1

+CPIN: READY

AT+CGPADDR

+CGPADDR: 1,"26.186.219.185"

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 24 / 31

OK

AT+QSCLK=0 //Disable sleep mode.

OK

AT+QSSLCFG=0,0,"seclevel",1 //Set the authentication mode to manage server authentication

 for SSL context 0.

OK

AT+QSSLCFG=0,0,"cacert" //Configure CA certificate.

> //Input the content of the trusted CA certificate in PEM format. Tap

 "CTRL"+"Z" to send.

+QSSLCFG: 0,0,"cacert",1250

OK

AT+QHTTPCFG="ssl",0,0 //Set SSL context ID and connection ID to 0 and 0 respectively.

OK

AT+QHTTPCFG="responseheader",1 //Enable outputting of HTTPS response header.

OK

AT+QHTTPURL=32 //Set the URL of HTTPS server to be accessed.

>

https://api.quectel.com/v1/token //Input URL whose length is 32 bytes.

OK

AT+QHTTPPOST=38 //Send HTTPS POST request. POST body is obtained via UART.

>

appId=xxxxxx&secret=xxxxxx //Input HTTPS POST body whose length is 38 bytes.

OK

+QHTTPPOST: 0,200 //HTTPS response header does not contain content-length,

 <content_length> is not reported.

//Example of how to read HTTPS response.

AT+QHTTPREAD=1024 //If response has no <content_length>, wait for maximum 90 s.

+QHTTPREAD: 354,0 //The actual length of read data is 354 bytes, and the remaining

 length of the HTTP response is 0 bytes.

HTTP/1.1 200 OK

Server: nginx/1.16.1

Date: Wed, 06 May 2020 14:40:44 GMT

Content-Type: application/json;charset=utf-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Application-Context: quechub-portal:8087

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 25 / 31

3d

{"code":70029,"msg":"Application information does not exist"}

0

OK

AT+QSCLK=1 //Enable sleep mode.

OK

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 26 / 31

4 Error Handling

4.1. Executing HTTP(S) AT Commands Failure

If ERROR response is received from the module after executing HTTP(S) AT commands, check whether

the (U)SIM card is inserted and whether +CPIN: READY is returned after executing AT+CPIN?.

4.2. DNS Parse Failure

If 714 (HTTP(S) DNS error) is returned after executing AT+QHTTPGET or AT+QHTTPPOST, check the

following:

1. Make sure the domain name of HTTP(S) server is valid.

2. Query the status of the PDP context with AT+CGATT? and AT+CGPADDR sequentially to make sure

the specified PDP context has been activated successfully.

3. Query the address of the DNS server with AT+QIDNSCFG to make sure the DNS server address is

 not "0.0.0.0".

If the DNS server address is null or "0.0.0.0", there are two solutions:

1. Reassign a valid DNS server address by AT+QIDNSCFG.

2. Deactivate the PDP context with AT+CFUN=0, and re-activate the PDP context via AT+CFUN=1.

For details of above commands, see document [1].

4.3. Entering Data Mode Failure

If 704 (HTTP(S) UART busy) is returned after executing AT+QHTTPURL or AT+QHTTPPOST, check if

there are other ports in data mode, since the module only supports one port in data mode at a time. If any,

NOTE

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 27 / 31

re-execute these commands after other ports have exited data mode.

4.4. Sending GET/POST Request Failure

If a failed result is received after executing AT+QHTTPGET, AT+QHTTPGETEX or AT+QHTTPPOST,

check the following configurations:

1. Make sure the URL input via AT+QHTTPURL is valid and can be accessed.

2. Make sure the specified server supports GET/POST requests.

3. Make sure the PDP context has been activated successfully.

If all above configurations are correct, but sending GET/POST requests with AT+QHTTPGET,

AT+QHTTPPOST still fails, deactivate the PDP context with AT+CFUN=0 and re-activate it with

AT+CFUN=1 to resolve this issue. If activating the PDP context fails, see Chapter 4.2 to resolve this

issue.

4.5. Reading Response Failure

Before reading responses with AT+QHTTPREAD, execute AT+QHTTPGET, and AT+QHTTPPOST, and

the following URC information will be reported:

+QHTTPGET: <result>,<HTTP_rspcode>[,<content_length>]

+QHTTPPOST: <result>,<HTTP_rspcode>[,<content_length>]

In case of errors during execution of AT+QHTTPREAD, such as: 717 (HTTP(S) socket read error),

resend HTTP(S) GET/POST requests to HTTP(S) server with AT+QHTTPGET, and AT+QHTTPPOST. If

the sending of GET/POST requests to HTTP(S) server fails, see Chapter 4.4 to resolve this issue.

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 28 / 31

5 Summary of Result Codes

The result code <result> indicates a result related to mobile equipment or network operation. The details

about <result> are described in the following table.

Table 2: Summary of Error Codes

<result> Meaning

0 Operation successful

701 HTTP(S) unknown error

702 HTTP(S) timeout

703 HTTP(S) busy

704 HTTP(S) UART busy

705 HTTP(S) no GET/POST requests

706 HTTP(S) network busy

707 HTTP(S) network open failed

708 HTTP(S) network no configuration

709 HTTP(S) network deactivated

710 HTTP(S) network error

711 HTTP(S) URL error

712 HTTP(S) empty URL

713 HTTP(S) IP address error

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 29 / 31

714 HTTP(S) DNS error

715 HTTP(S) socket create error

716 HTTP(S) socket connect error

717 HTTP(S) socket read error

718 HTTP(S) socket write error

719 HTTP(S) socket closed

720 HTTP(S) data encode error

721 HTTP(S) data decode error

722 HTTP(S) read timeout

723 HTTP(S) response failed

726 Input timeout

727 Wait data timeout

728 Wait HTTP(S) response timeout

729 Memory allocation failed

730 Invalid parameter

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 30 / 31

6 Summary of HTTP(S) Response Codes

<HTTP_rspcode> indicates the response codes from HTTP(S) server. The details about

<HTTP_rspcode> are described in the following table.

Table 3: Summary of HTTP Response Codes

<HTTP_rspcode> Meaning

200 OK

403 Forbidden

404 Not found

409 Conflict

411 Length required

500 Internal server error

NB-IoT Module Series

BC660K-GL&BC950K-GL_HTTP(S)_Application_Note 31 / 31

7 Appendix and References

Table 4: Related Documents

Table 5: Terms and Abbreviations

Document Name

[1] Quectel_BC660K-GL&BC950K-GL_SSL_Application_Note

[2] Quectel_BC660K-GL&BC950K-GL_AT_Commands_Manual

Abbreviation Description

DNS Domain Name Server

DTR Data Terminal Ready

HTTP Hyper Text Transport Protocol

HTTPS Hypertext Transfer Protocol Secure

PDP Packet Data Protocol

SSL Security Socket Layer

TA Terminal Adapter

TLS Transport Layer Security

UART Universal Asynchronous Receiver/Transmitter

URC Unsolicited Result Code

URI Uniform Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

	About the Document
	Contents
	Table Index
	1 Introduction
	1.1. Description of HTTP(S) Request Header
	1.1.1. Customize HTTP(S) Request Header
	1.1.2. Output HTTP(S) Response Header

	1.2. Description of Data Mode

	2 Description of HTTP(S) AT Commands
	2.1. AT Command Syntax
	2.1.1. Definitions
	2.1.2. AT Command Syntax

	2.2. Declaration of AT Command Examples
	2.3. AT Command Description
	2.3.1. AT+QHTTPCFG Configure Parameters for HTTP(S) Server
	2.3.2. AT+QHTTPURL Set URL of HTTP(S) Server
	2.3.3. AT+QHTTPGET Send GET Request to HTTP(S) Server
	2.3.4. AT+QHTTPGETEX Send GET Request to HTTP(S) Server to Get Data With Specified Range
	2.3.5. AT+QHTTPPOST Send POST Request to HTTP(S) Server via UART/USB
	2.3.6. AT+QHTTPREAD Read Response from HTTP(S) Server via UART/USB

	3 Examples
	3.1. Access to HTTP Server
	3.1.1. Send HTTP GET Request and Read Response
	3.1.2. Send HTTP POST Request and Read Response

	3.2. Access to HTTPS Server
	3.2.1. Send HTTPS GET Request and Read Response
	3.2.2. Send HTTPS POST Request and Read Response

	4 Error Handling
	4.1. Executing HTTP(S) AT Commands Failure
	4.2. DNS Parse Failure
	4.3. Entering Data Mode Failure
	4.4. Sending GET/POST Request Failure
	4.5. Reading Response Failure

	5 Summary of Result Codes
	6 Summary of HTTP(S) Response Codes
	7 Appendix and References

